Regulation of endothelial cell proliferation by primary monocytes.
نویسندگان
چکیده
OBJECTIVE Endothelial cell-monocyte cross talk is essential for vascular repair. Monocytes colocalize with endothelial cells forming a complex set of interactions distinct from the growth promoting cytokines secreted by differentiated macrophages. In the present work we examined the growth regulation and in vitro wound repair early after binding of monocytes to endothelial cells. METHODS AND RESULTS After direct contact with primary unactivated monocytes, endothelial cells enter S-phase through a mechanism mediated in part by contact-dependent activation of endothelial Met as demonstrated by siRNA silencing of Met, neutralizing antibodies for hepatocyte growth factor and Met as well as by specific inhibition of Met by the Met kinase inhibitor SU11274. Monocytes robustly promote endothelial cell proliferation and migration into a wounded endothelial monolayer. Monocyte-induced endothelial cell proliferation is accompanied by prolonged extracellular signal-regulated kinase (ERK) activation and is inhibited by the specific ERK inhibitor PD98059. The contact-mediated effect of monocytes is specific to endothelial cells and does not occur with vascular smooth muscle cells. Interestingly, although Flk1 is activated by monocytes, the proliferative effect of monocytes reported here is minimally mediated by Flk1 signaling. CONCLUSIONS These results suggest that the early interaction between endothelial cells and monocytes is critical for the regulation of endothelial cell proliferation. This complex regulation is mediated in part by contact-dependent Met and ERK phosphorylation. These findings add to a broader set of leukocyte-endothelial contact mediated signals that together regulate endothelial function in health and disease.
منابع مشابه
Monocyte activation state regulates monocyte-induced endothelial proliferation through Met signaling.
Direct interaction of unactivated primary monocytes with endothelial cells induces a mitogenic effect in subconfluent, injured endothelial monolayers through activation of endothelial Met. We now report that monocytes' contact-dependent mitogenicity is controlled by activation-mediated regulation of hepatocyte growth factor. Direct interaction of unactivated monocytes with subconfluent endothel...
متن کاملVASCULAR BIOLOGY Monocyte activation state regulates monocyte-induced endothelial proliferation through Met signaling
Direct interaction of unactivated primary monocytes with endothelial cells induces a mitogenic effect in subconfluent, injured endothelial monolayers through activation of endothelial Met. We now report that monocytes’ contactdependent mitogenicity is controlled by activation-mediated regulation of hepatocyte growth factor. Direct interaction of unactivated monocytes with subconfluent endotheli...
متن کاملتمایز سلولهای دندریتیک مشتق از مونوسیت بر روی لایهای از سلولهای اندوتلیال بهعنوان لایه تغذیهکننده
Background: The innate and adaptive immune responses are dependent on the migration of leukocytes across endothelial cells. Dendritic cells (DCs) play an important role in the initiation of cellular immune responses during their migration from tissues into the lymph nodes where they interact with endothelial cells of lymphatic vessels. We investigated the effect...
متن کاملLOX-1 protein, A Biomarker in the Prognosis of Atherosclerosis
LOX-1 is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunctions, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent bio...
متن کاملInhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture
Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2008